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’ INTRODUCTION

The concept that nature tends to reuse motifs and structural
components is commonly understood. In the case of proteins
and peptides, common structural motifs such as helices, sheets,
loops, etc. are well-known, and the concept that specific recogni-
tion events occur between amino acids in endogenous ligands
and their native receptors forms a fundamental tenet of structural
biology and drug design. Many of these amino acid recognition
events involve relatively large numbers of interactions, but given
the economy of nature, it is interesting to speculate what the
smallest information-bearing motif may be.

Our reading of the literature has indicated that motifs as small
as three contiguous amino acids play important roles in biology.
While longer sequences are also undoubtedly important, we
focus this review on tripeptide motifs to illustrate the concept of
conserved contiguous motifs. Clearly not all 8000 possible
tripeptides are likely to have biological importance, but our review
suggests that a substantial number of them do play significant
roles. As we will illustrate, endogenous tripeptides clearly have
important signaling roles in biology, lending credence to the
contention that motifs as small as three amino acids are indeed
important and capable of valuable function. However, contig-
uous tripeptide sequence embedded in larger peptides and pro-
teins also have useful signaling properties. The minimal useful
length may be a product of the number of effective molecular
interactions that is required between a ligand and protein receptor
to have useful efficacy. Some evidence for optimality of a three-
residue motif has been provided by the studies of Reynolds et al.
and of Neduva and Russell. In the former work,1 the authors
proposed that 25 heavy atoms (HA) gave optimal ligand affinity or
“maximal efficacy”. Given that the average number of heavy (non-
hydrogen) atoms in the natural amino acids is 8.3, three residues
would on average contribute 25 heavy atoms. Figure 1 illustrates
the distribution of heavy atoms across all 8000 possible tripeptides
showing the peak of the distribution close to 25 heavy atoms.

Figure 2 shows howmaximal ligand affinity varies as a function
of ligand size (number of heavy atoms). The affinity curve peaks
for 20 to 35 heavy atoms, and the ligand efficacy curve is roughly
bell shaped, with efficacy falling for ligands with more than 40
heavy atoms (Figure 2).

Neduva and Russell2 used informatic methods to study short
linear motifs (usually shorter than 10 residues) likely to partici-
pate in protein interactions, localization, and posttranslational
modifications in many biological processes.2 They summarized
the properties of previously determined linear peptide motifs
between four and eight residues in length, which have two to four
specified (i.e. non-“x”, where x is any amino acid) positions, of
which one to three are a single invariant amino acid (Figure 3).

This analysis showed that motif length for known short motifs
peaked at four residues. When the residues were specified, the
peak was at three residues, and for invariant positions (a single
specific residue in the motif), at one to two residues.

Hann et al.3 also provide indirect evidence for efficacy of ligands
having around 25 heavy atoms. Their work showed that in
druglike libraries and the World Drug Index, the heavy atom
ADEPT (a Daylight enumeration and profiling tool)4 profile
(histograms of calculated molecular properties) peaks at 25 heavy
atoms. Leadlike libraries peak at slightly lower numbers of heavy
atoms. As many drugs mimic biological signals, this over-repre-
sentation of drugs with 25 heavy atoms is consistent with pep-
tide motifs around three amino acids in length having biolo-
gical relevance.

A relatively small number of papers have analyzed the knowl-
edge base of proteins to show that tripeptide peptide motifs have
nonrandom frequencies. Anishetty and co-workers have been
the most active at investigating the frequency of tripeptides in
the known protein sequence space. They employed informatic
methods to investigate the distribution and structural flexibility
of tripeptides and related these to protein stability.5-7 Several
researchers, notably Brooks et al., have studied the nonrandom
distribution of peptide motifs in terms of evolution and selection
pressure.8 Even more relevant is the analysis by Gatto and Berg
who analyzed the frequency of occurrence of C-terminal tri-
peptides in archaeal, bacterial, and eukaryotic genomes.9 The
sequence distribution in prokaryotes was essentially random. In
contrast, eukaryotes contain large numbers of overrepresented
sequences, some representing previously known targeting sig-
nals, but some have not been previously noted that represent
novel functional sequences. Otaki et al. analyzed all 8000 possible
tripeptide motifs and found that a substantial number of triplets
(around 20%) are present more frequently than expected by
chance and others are underrepresented.10 The tripeptide fre-
quency distribution was highly skewed in the positive direction,
and only about 20% of triplet species occur completely randomly.

These reports have discussed the role of small peptide motifs
in stabilizing proteins, in protein evolution, and in generating
secondary structure, but nonehave explored the role of smallmotifs
as biological signals that could be exploited in drug discovery. As
biologists and medicinal chemists have only sparsely sampled the
sequence space for tripeptides and biological modulators, it is
likely that many more useful and important tripeptide motifs will
be discovered. Surprisingly, no reviews of this type have been
reported previously, although a paper that appeared as we were
finalizing this review also discusses the peptide motifs in the
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context of medical diagnosis and treatment, nanotechnology, and
materials science.11

We conducted an extensive literature review to find examples
of biologically relevant tripeptide motifs, either as endogenous
peptides or as components of larger proteins. We were parti-
cularly interested in motifs that had not been mimicked by
small molecules, in addition to those for which small molecule
mimics had been reported. Extensively exploited tripeptides
sequences, like the cell adhesion motif RGD, have been given a
more cursory treatment because of the number of existing
reviews in the literature.12 Our review covers peptide motifs

that occur across a wide range of biological systems and illus-
trates some of the small molecules used to mimic them. Many
more important tripeptide motifs have yet to be discovered and
exploited by peptide mimetic small molecule drugs. We pro-
pose that tripeptide motifs represent potentially important
starting points for design of small molecule biological mod-
ulators. The existence of such a wide variety of tripeptide motifs
in biology, together with the evidence of the preferred status
of tripeptides in nature described above, suggests that three
amino acids may represent an optimal if not minimal size for
biological signaling.

Figure 1. Distribution of heavy atoms in all 8000 possible tripeptides.

Figure 2. Ligand affinities versus size. The figure shows only the most potent ligands for a given ligand size. The change in affinity is clearly not linear
with size. Reproduced from Bioorganic & Medicinal Chemistry Letters (http://www.sciencedirect.com/science/journal/0960894X), Vol. 17, Reynolds,
C. H.; Bembenek, S. D.; Tounge, B. A., The role of molecular size in ligand efficiency, pp 4258-4261, Copyright 2007, with permission from Elsevier.1
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’SUMMARY OF BIOLOGICALLY RELEVANT TRIPEP-
TIDE MOTIFS

The literature survey identified 16 important tripeptidemotifs,
some of which are well-known and others that have been less well
studied but may have also been exploited by small molecule
mimetics. Endogenous tripeptides include the following:
(1) ECG (glutathione), antioxidant, cofactor
(2) EHP, stimulates pituitary gland controlling thyroid-sti-

mulating hormone secretion
(3) FEG, inhibition of anaphylaxis, anti-inflammatory, mod-

ulates cardiac leukocyte adhesion
(4) GHK, tissue remodeling and wound healing
(5) PLG, modulator of the dopamine D2 receptor

Tripeptide motifs in proteins include the following:
(6) DLF/SLF, inhibition of β protein of bacterial replisome,

antimicrobial
(7) ELR, chemokine, growth factor binding motif
(8) GGQ, release factor, stop codon recognition
(9) GPE, neuroprotection
(10) HAV, cadherin motif, cell-cell interactions, and adhesion
(11) HGK, vitronectin inhibition
(12) HPQ, streptavidin binding motif
(13) KPV, anti-inflammatory properties
(14) LDV, vascular cell adhesion molecule 1 (VCAM-1)/

fibronectin adhesion motif
(15) RGD, cell adhesion signal andmodulation of thrombosis
(16) SKL, peroxisomal targeting
The following sections describe the role of each tripeptide

motif and summarize attempts to design or discover small
molecule mimics of the motif, where they exist.

’ENDOGENOUS PEPTIDES

ECG: Glutathione (GSH), Antioxidant. Glutathione (γ-L-
glutamyl-L-cysteinylglycine) is an endogenous tripeptide that
can exist in the reduced state GSH or the oxidized state GSSH,
resulting in antioxidant activity. Unlike other tripeptides, glu-
tathione has an unusual peptide linkage between the amine group
of cysteine and the carboxyl group of the glutamate side chain.
The presence of large amounts of reactive oxygen species (ROS)

in the body leads to oxidative stress which has been linked to
various neurodegenerative diseases such as Parkinson’s disease.13

GSH is a major antioxidant in the brain,14 an essential cofactor
for many enzymes, a nontoxic cysteine storage utility, a major
redox buffer, and a neuromodulator/neurotransmitter in the
central nervous system (CNS).13 At present the precise mecha-
nism for the transport of GSH from the blood through to the
brain is not completely clear, as GSH is believed to not be
blood-brain barrier permeable.15,16 The existence of a GSH
transporter was reported by Kannan et al.17 Therapeutic use of
exogenously administered GSH is difficult, as it is rapidly
metabolized and eliminated when administered orally and
intravenously.13,18 A more viable approach involves targeting
the endogenous mechanisms inducing GSH synthesis as sug-
gested in the review by Aoyama et al.13

Overexpression of glutathione S-transferase (GST), particu-
larly the P1-1 isozyme, is a characteristic of most tumor types.19

GST plays a major role in the detoxification of certain electro-
philic cytotoxins by conjugating them with the peptide scavenger
GSH and thus has been suggested to lead to drug resistance.20

However, this mechanism has been exploited in the generation of
novel drug treatments for specific tumor cell types. For example,
TER286 is nontoxic and inactive when intact but proton
abstraction by tyrosine in the active site of GST results in the
release of the sulfone-glutathione moiety and the active alkylat-
ing agent cyclophosphamide (Figure 4).21

EHP: Thyrotropin-Releasing Hormone (TRH), pyro-Glu-
His-Pro-NH2. TRH is an endogenous tripeptide with the se-
quence pyro-Glu-His-Pro-NH2. It is the major stimulator of the
pituitary gland controlling the secretion of thyroid-stimulating
hormone (TSH, thyrotropin). TRH is localized throughout the
brain, the CNS, the gastrointestinal tract, the pancreatic islets,
and the reproductive system. There are two known thyrotropin-
releasing hormone receptor (TRH-R) subtypes, both belonging
to the G-protein-coupled receptor (GPCR) superfamilies TRH-
R1 and TRH-R2. However, TRH-R1 is the most widely inves-
tigated subtype, as it is the only one present in humans.22 The
active conformation of the TRH tripeptide is unknown, and
much effort has been put toward elucidating its binding conforma-
tion in TRH-R1. These studies include computer simulations,

Figure 3. Distributions of length (red), number of specified, and invariant
positions for 120 known linear motifs. Reproduced with permission from
Nucleic Acids Research, Vol. 34, Neduva, V.; Russell, R. B., DILIMOT:
discovery of linear motifs in proteins, pp W350-W355, Copyright 2006,
with permission from Oxford University Press.2

Figure 4. Mechanism by which TER286 liberates cyclophosphamide.
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synthesis, and binding affinity measurement of constrained
peptidomimetics to infer possible active conformations of the
ligand.23-26 The mode of binding and mechanisms of receptor
activation have been thoroughly reviewed.27 A large number
of TRH analogues have been synthesized, with many of these
being more potent than TRH itself.28 Taltirelin (Figure 5) is an
example of an analogue in which the N-terminal pGlu is replaced
with a nonproteogenic amino acid. It is approximately 100 times
more potent than TRH and has a much longer half-life. It is
currently approved in Japan for the treatment of adult spinal mus-
cular atrophy and ismarketed under the trade nameCeredist.29-31

Apart from modifications at the pGlu residue, TRH analogues
with modified His, Pro-NH2, and combinations thereof have all
been explored.28 Posatirelin (RGH-2202, Figure 5) is an example
of a TRH analogue with simultaneous replacements at the pGlu
and His residues. The resulting neutral molecule has enhan-
ced CNS activity, being 5 times more potent than the parent
peptide.28 Studies have shown that posatirelin may improve
cognitive and functional abilities in late onset Alzheimer’s
disease.32

TRH analogues, including peptidemutants and analogues, and
small molecule mimetics also exhibit central nervous system acti-
vity.33 They show substantial cholinergic and adrenergic respon-
ses. TRH shows cognitive, ergotrophic effects on consciousness
and arousal, along with learning and memory improvements
consistent with the role of acetylcholine.34 Systemic TRH elicits
motor and behavioral effects in many species, principally media-
ted by dopamine. Dopamine antagonists block TRH locomotor
activation. TRH elevates dopamine in the cerebral cortex and
increases tyrosine hydroxylase activity.34

FEG: Inhibitor of Intestinal Anaphylaxis. The tripeptide
NH3

þ-Phe-Glu-Gly-COO- (FEG) is a potent inhibitor of in-
testinal anaphylaxis.35,36 It also exhibits antihypotensive activity
against anaphylactic shock36 and anti-inflammatory activity37,38

and regulates leukocyte adhesion in the heart.39-42 Metwally
et al. prepared a series of peptide analogues of FEG and performed
3D modeling in an attempt to elucidate structural features
essential for its biological activity.43 They identified five compo-
nents of FEG that are required for its biological activity. These
include aromaticity at the first residue, a carboxylic acid moiety in
the second residue, restricted movement of the side chain in
position 1, and free N- and C-termini.43 Galeazzi et al. reported a
synthetic protocol for the preparation of an FEG mimetic
(Figure 6) based on a conformationally restricted EG dipeptide
analogue.44 On comparing the biological activity of the mimetic
to the parent FEG peptide, Galeazzi et al. found a significant
decrease in the ability of the mimetic to inhibit rat intestinal
anaphylaxis.44Molecular dynamics simulations of themimetic and

the natural peptide showed that the conformational behavior and
orientation of putative binding groups in the parent peptide was
not preserved, thus explaining the decrease in activity.44

GHK/GHK-Cu Complex: Tissue-Remodeling Activity. The
human tripeptide Gly-(L-His)-(L-Lys), GHK, has been strongly
implicated in wound healing. However, the mechanism is rather
complex and involves a plethora of underlying cellular processes.
The tripeptide has a very high Cu2þ affinity, allowing it to form
the complex GHK-Cu. It is generated after tissue injury by
proteolytic degradation of proteins of the extracellular matrix.
GHK/GHK-Cu is normally found in human plasma, saliva, and
urine. Structural data for GHK-Cu in solution have been repor-
ted by Perkins et al. and in earlier publications.45-49

Both GHK and GHK-Cu also exhibit distinct biological
actions, despite most of the literature reports relating to the
copper complex (Figure 7). GHK/GHK-Cu exerts its tissue
remodeling activity through a number of biochemical processes,
including anti-inflammatory actions,50 chemoattraction of heal-
ing cells,51 enhanced nerve outgrowth,52-54 increased stem cell
proliferation and differentiation,55 re-establishment of blood flow
to damaged tissues (through angiogenesis, anticoagulation and
vasodilation),55-57 and simultaneous activation of the metallo-
proteinase and anti-protease production for removal of damaged
proteins and protein synthesis to rebuild the extracellular
matrix.51,58 Further information may be found in the review by
Pickard.50

Development of GHK/GHK-Cu into orally active drugs has
not been a focus of researchers, as the many applications of this
tripeptide involve topical use (e.g., wound healing, cosmetic
remodeling) or intravenous or intramuscular injections (syste-
mic wound healing). A novel use for GHK has recently been
explored by Leblanc et al. where the high affinity for copper ions
is exploited to generate a fluorescent chemosensor.59 They real-
ized that lysine did not contribute to the copper coordination, so

Figure 5. Structures of TRH and TRH analogues.

Figure 6. FEG (left) and mimetic (right).

Figure 7. X-ray crystal structure of GHK coordination with a copper
atom. Reproduced with permission from Inorganica Chimica Acta
(http://www.sciencedirect.com/science/journal/00201693), Vol. 82,
Perkins, C. M.; Rose, N. J.; Weinstein, B.; Stenkamp, R. E.; Jensen,
L. H.; Pickart, L., The structure of a copper complex of the growth factor
glycyl-L-histidyl-L-lysine at 1.1 Å resolution, pp 93-99, Copyright 1984,
with permission from Elsevier.49
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they derivatized the lysyl side chain with 9-anthracenecarboxylic
acid (a common fluorophore) (Figure 8). The basis for their
chemosensor involves fluorescence quenching of the GHK-
derived fluorophore upon binding to copper ions.
PLG: Dopaminergic Modulator. PLG (Pro-Leu-Gly-NH2)

is an endogenous tripeptide modulator of the dopamine D2
receptor in the central nervous system. It selectively enhances the
responsiveness of the dopamine receptors to agonists by increas-
ing the number of receptors in the high-affinity state and also by
increasing the affinity of these receptors toward the agonist.60,61

Its potential use in the treatment of diseases such as Parkinson-
ism or schizophrenia makes it an attractive drug candidate for
further development. Structure-activity relationship studies on
conformationally restricted PLG mimetics and X-ray analysis of
PLG structure suggest that its bioactive conformation is a type II
β-turn stabilized by intramolecular hydrogen bonding between
the C-terminal amide NH and the proline carbonyl.62-64 Be-
cause of the large number of peptide analogues65-72 and pepti-
domimetics63,64,73-80 of PLG that has been reported, we will not
be reviewing the entire literature but will draw some key
examples to illustrate the direction taken by various groups.
Johnson et al. prepared PLG analogues by exploiting a spiro

bicyclic type II β-turn mimic previously suggested as the active
conformation. They examined the effect of varying ring size in
the highly rigid spiro bicyclic scaffold.77 Figure 9 shows one such
analogue incorporating a spiro tricyclic structure that enhanced
the binding of [3H]-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydro-
naphthalene (ADTN) to dopamine receptors compared to the
parent peptide.76,81

Despite numerous reports suggesting the bioactive conforma-
tion of PLG to be a type II β-turn, Luthman et al. used a 2,3,4-
substituted pyridine scaffold to build their PLG mimetic
(Figure 9).82 Conformational analysis of their pyridine-based
tripeptide mimetic reveals that it cannot adopt the type II β-turn
conformation. However, using a cell-based assay, Luthman et al.
showed that their mimetic was more potent than PLG at
enhancing the human D2 receptor activity of dopamine agonist
N-propylapomorphine. At 10 nM, the maximum response using
the mimetic was 146% compared to 115% for PLG. Luthman
et al. synthesized the PLG mimetic via an eight-step synthetic
procedure with 20% overall yield.82

’TRIPEPTIDE MOTIFS IN PROTEINS

There are potentially a large number of highly conserved
tripeptide motifs in proteins in nature, and much effort has
undergone to identify these sequences and their biological
function. For example, recently Neduva and Russell described
a server, DILIMOT2 for discovering short linear motifs within a
set of proteins that share a common functional feature and that

are over-represented. We summarize some tripeptide motifs that
have been reported in the literature and describe their possible
pharmacological role.
DLF/SLF: DNA Polymerase β Protein Recognition. The

bacteria replisome offers a novel target for the development of
new antibiotics to tackle the emergence of increasingly drug
resistance strains. The β protein is an essential component of the
replicative machinery of microbes, as it provides a platform for
assembly of the other components of the DNA polymerase and
the means by which the machine can transport along the DNA
strand during the replication process. Wijffels et al.83 reported a
conserved pentapeptide motif QL[D/S]LF in DNA polymerase
A (Pol A) proteins binding to the β protein that is conserved over
many strains of bacteria including drug-resistant strains.83,84 The
consensus sequence was determined from the most frequently
used amino acids in each position in the five amino acid motif.
They showed that DLF exhibited moderate binding to the β
protein and that cyclic versions of this motif were not active.
Small molecule mimetics of the tripeptidemotif (Figure 10) were
designed using a conserved 3D conformation for DLF derived
from the Protein Data Bank.85 Subsequently, this group also
reported an X-ray study of binding of the peptide motif, and small
molecule mimetics to the recognition site of the β protein. These
studies showed that the peptide motif and small molecule
mimetics occupy overlapping binding sites on the β protein.85

ELR: CXC BindingMotif. The ELR (Glu-Leu-Arg) tripeptide
motif is found near the N-terminus of a family of CXC
chemokines and is believed to be partially responsible for its
receptor binding. The CXC family can be classified into ELRþ or
ELR- depending on whether the ELR motif is present.86

Examples of ELRþ CXC chemokines include those that stimu-
late melanoma growth (CXCL1, CXCL2, and CXCL3), epithe-
lial neutrophil activating protein (CXCL5), granulocyte chemo-
tactic peptide 2 (CXCL6), neutrophilic activating protein
(CXCL7), and interleukin 8 (CXCL8).86 Of these, the most
heavily exploited for pharmaceutical purposes have been the
ELRþ chemokines, CXC chemokine receptor 1 (CXCR1), and
CXC chemokine receptor 2 (CXCR2).87,88

Over the years, numerous CXCR1 and CXCR2 targeting stra-
tegies and compounds have been developed. These have been
described in an extensive series of papers by Mathison
et al.35,37,38,40-43,89 and Bizzarri.90 These strategies include
antibodies, competitive inhibitors, and noncompetitive allosteric
inhibitors acting at a site downstream from receptor binding site.
Many of these compounds have progressed to preclinical and
clinical trials. For example, Anogen (Yes Biotech Labo-
ratories) developed a topical cream for the treatment of psori-
asis. The formulation comprises an anti-CXCL8 monoclonal

Figure 8. GHK-derivitized with anthracene for use as a chemosensor
for copper ions.

Figure 9. Structures of PLG and conformationally constrained analogues.
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antibody and is currently marketed as ABCream. The search for
small molecule antagonists of CXCL8 is a highly active area of
drug research. Programs at GlaxoSmithKline led to the discovery
of the diarylurea scaffold,91 the most widely investigated class of
compounds for CXCL8 antagonism with extensive coverage in
the patent literature.92,93 Examples of active diarylureas are illus-
trated in Figure 11. These compounds are of particular interest,
as they are being developed commercially and undergoing
clinical studies. These compounds have a good selectivity profile
when tested on a wide range of chemokine and non-chemokine
receptors.90

Reparixin is a potent, selective, noncompetitive allosteric
inhibitor of CXCL8 receptors. It was selected from a class of
2-arylphenylpropionic acid lead structures.90 Bertini et al. in-
vestigated the mode of action of reparixin (Figure 12) and pro-
posed that binding to the CXCL8 receptor locks it in an inactive
conformation that prevents intracellular signal transduction.94

GPE: Neuroprotectant. Glycine-proline-glutamate (GPE)
is a tripeptide sequence in the N-terminal domain of insulin-like
growth factor 1 (IGF-1) currently under investigation for neuro-
protective properties.95 Following acute ischemic brain injury,
administration of GPE has been shown to reduce both cortical
damage and neuronal loss in the CA1-2 subregions of the hippo-
campus.96-98

Garcia-Lopez et al. used solid-phase synthesis to generate a
library of GPE analogues.99 They assessed the ability of the
library to displace L-[3H]glutamate from rat brain synaptic mem-
branes and compared the results with the endogenous peptide
GPE. Most compounds retained glutamate receptor binding
affinity, while some had improved affinity. The compounds were
then investigated for neuroprotection using cultured hippocam-
pal neurons exposed to NMDA at 100 μM. Interestingly, all of
the synthesized compounds showed lower neuroprotective po-
tencies compared to the endogenous tripeptide GPE. The results
suggest that the neuroprotective ability of these analogues after
N-methyl-D-aspartic acid (NMDA) injury does not directly
correlate with their glutamate receptor affinity.99 Thus, several
groups are investigating more closely the pharmacological activity
of GPE via systematic modifications to the three residues.99-105

GGQ: Class 1 Release Factor Stop Codon Recognition.
The GGQ (Gly-Gly-Gln) tripeptide motif is found in all class 1
release factors (RF) and is vital for their activity. Class 1 RFs are
responsible for the recognition of stop codons in mRNA and
promote peptidyl-tRNA cleavage on the ribosome.106 In bacteria
two class 1 RFs are responsible for the recognition of the three

stop codons. In Archaea and Eukarya a single class 1 RF recog-
nizes all three stop codons. Interestingly these RFs show no
sequence similarity with bacteria RFs with the exception of the
GGQ, which is conserved in all three kingdoms. Site directed
mutagenesis on human eRF1 (a class 1 RF) shows that substitu-
tion of either glycyl residues results in complete loss of activity of
the protein as a release factor toward all stop codons.107

HAV: Cadherin Antagonism, Cell-to-Cell Adhesion. The
cadherins are calcium-dependent glycoprotein cell adhesion mo-
lecules found in several kinds of cell-cell contact. Cadherins play
a central biological role, particularly in cell adhesion, morpho-
genesis, neurogenesis, and many other important functions. There
are three main categories of cadherin, E-, N-, and P-cadherins,
which interact directly and/or indirectly with a wide range of
receptor tyrosine kinases, including the epidermal growth factor
receptor, the c-Met receptor, the ephrin A2 receptor,108 and the
fibroblast growth factor receptor (FGFR).109 The central role of
cadherin in biology has been reviewed recently by Halbleib,110

Gumbiner,111 and Pokutta.112

A key recognition sequence, HAV (His-Ala-Val), in cadherin
was first identified by Blaschuk et al.113 This motif and an
additional motif, INP reported byWilliams’ group, showed useful
cadherin antagonist effects.114 Later studies by Williams et al.
showed that the amino acids immediately flanking the HAV
sequence control the selectivity of the E-, N-, and P-cadherins.115

An alanine scan of a short HAV-containing peptide that antag-
onized cadherin was conducted byMakagiansar et al.116 and used
to optimize the peptide sequence. The structures of most of these
short linear peptides were not well-defined, as is common with
peptides having lengths shorter than about 15 residues. How-
ever, an NMR and X-ray structure of one of these active
antagonist peptides was reported by Lutz at al.117 The peptide
has an extended β sheet structure between residues Leu1
and Asp7, the same structural motif as that in the X-ray
crystal structure of a similar sequence in haemagglutinin. The
region from Asp7 to Gly10 was a β-turn. Cyclization of the
active antagonist peptides also generated effective cadherin
antagonists, and these had the advantage of having a more
conformationally constrained presentation of the key HAV
motif.
Cadherins cause dimerization of many tyrosine kinase recep-

tors to exert agonist activity. Consequently, the short, linear
peptide sequences only exhibited antagonist effects, as the pep-
tides were too short to span the distance required to interact with
the binding regions of two receptors. Williams et al. showed that
dimerizing peptides containing the HAV motif converted the

Figure 10. Small molecule DLF mimetics derived from a virtual screen of databases. These compounds inhibited the β protein with IC50 = 270 μM
R/β and IC50 = 90 μM δ/β (left) and IC50 = 350 μM R/β and IC50 = 290 μM δ/β (right).

Figure 11. Examples of diarylureas CXCL8 antagonists.
Figure 12. Reparixin.
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antagonists into agonists. The N-Ac-CHAVDINGHAVDIC-
NH2 peptide stimulated neurite outgrowth from rat cerebellar
granule cells in a dose-dependent manner, with a maximal 70%
increase in neurite length found at 7.3 μM peptide.108

Given the conformational flexibility and instability of even
cyclic peptides containing the cadherin recognition motif, it was
clear that small molecule mimics of this sequence would be
desirable. Burden-Gully et al. have very recently reported small
molecule mimics that show moderate cadherin antagonist activi-
ties.118 These leads were identified through their structural simi-
larity to the N-cadherin specific cyclic peptide antagonist N-Ac-
CHAVDC-NH2 using a pharmacophore-based virtual screen
of large available chemical databases. Database hit activity was
improved by medicinal chemistry optimization techniques to
yield N-cadherin antagonists with IC50 values of 5-30 μM as
described in U.S. Patent 7,446,120 B2 (Figure 13). Burden-
Gulley et al. also reported the conversion of small molecule
antagonists to agonists.119 The structures of the agonists were
not disclosed, but presumably they were created by dimerizing
the antagonist structures (as was done for the cyclic peptide
antagonists) to generate first small molecule cadherin agonists.
HGK: Vitronectin-Mediated Metastasis Inhibitor. Kinino-

gens are precursors of kinin, a member of the autocoid polypep-
tide family. Autocoids, notable examples of which include angio-
tensin and endothelins, are local hormones that exert a paracrine
effect. There are two main types of kininogen: (1) a high molec-
ular weight kininogen (HK) produced by the liver that mainly
functions as a cofactor for blood coagulation and inflammation
and (2) a low molecular weight kininogen produced by numer-
ous tissues. Kinin-free HK is obtained after cleavage by kallikrein,
factor XIIa, or plasmin, which releases kinin. Kawasaki et al. has
reported that the tripeptide HGK in domain 5 of kinin-free HK,
and peptide derivatives containing the amino acid sequence
HGK, inhibited vitronectin-mediated metastasis of MDA-MB-
231 cancer cells in vitro and B16-F10 lung metastasis in mice
experiments.120 To date, no small molecule mimics of HGK have
been reported. Small molecule drugs based on this motif may
play an important role in inhibition of metastasis.
HPQ: Streptavidin Recognition Motif. The HPQ (His-Pro-

Gln)motif has been shown to have high affinity for streptavidin, a
protein reagent commonly used as an affinity tag in a variety of
biological applications and clinical diagnostics.121 The streptavi-
din-binding HPQmotif has been incorporated into many recom-
binant proteins, allowing for their isolation through a streptavidin
affinity column. The very high affinity streptavidin ligand, biotin,
is used in streptavidin affinity columns to displace the HPQ
incorporated proteins, allowing for their elution from the
column.122 The mechanism of binding of HPQ toward strepta-
vidin has been probed through crystallography data and plasmon
resonance binding measurements. The researchers found that in
a set of HPQ-containing peptides, deprotonation of the His
residue is required for high affinity binding to streptavidin both in
the crystals and in solution.123 The histidine side chain makes
two hydrogen bonds (Nδ1His-NGln and Nε2His-Oγ2Thr90) at
pHg 2.5.124 These peptides, or small molecule mimics with high

affinity, may find application in the targeting or endoradiother-
apy of tumors.
KPV: Antimicrobial, Anti-Inflammatory Tripeptide Motif.

KPV (Lys-Pro-Val) is the C-terminal tripeptide sequence of
R-melanocyte-stimulating hormone (R-MSH). The tripeptide,
like its parent molecule, has been clearly demonstrated to exhibit
anti-inflammatory activity in vitro and in vivo; however, the
mechanism by which it exerts its pharmacological effects is
poorly understood. The N-acetylated and C-amidated KPV tri-
peptide and several related stereoisomers and analogues have
been shown to possess similar activity to R-MSH. These related
tripeptides include the stereoisomers dKPV, KPdV, KdPV, and
dKPdV and the structurally related peptide KdPT, whereby
valine is replaced by the more polar threonine. Because of its size
and pigmentation effects, use of R-MSH for treatment of human
immune-mediated inflammatory diseases is compromised, mak-
ing KPV or analogues a more attractive approach for therapy.
These tripeptides are suitable for large-scale pharmaceutical
production, although, being peptides, they have issues relating
to pharmacokinetic profile, absorption, and metabolism. Pep-
tides have been used successfully as drugs, but in general small
molecule mimetics with improved pharmacokinetics properties
are preferred. Extensive research into the anti-inflammatory
effects of R-MSH related tripeptides, its analogues, and its
stereoisomers in vitro and in vivo has been reported.125 Recently,
antimicrobial activity of R-MSH and KPV against Staphylococcus
aureus andCandida albicans has also been established, making the
therapeutic use of these peptides even more attractive in cases
where infection and inflammation coexists.126 An extensive
review of R-MSH and related peptides has been published
recently by Brzoska et al.125 Very recently, Leoni et al. repor-
ted a small molecule agonist of the melanocortin MC1 receptor
that inhibits leucocyte trafficking in inflamed vasculature;
however, this does not appear to be a mimic of KPV. To date,
no small molecule mimics of KPV or its related stereoisomers
have been reported.
LDV:FibronectinAdhesionMotif. Komoriya and co-workers127

and Mould et al.128 first reported the minimal essential sequence for
major cell type specific adhesion. They studied one of the connecting
segment domains of fibronectin and generated a series of peptides
containing overlapping sequences taken from this domain. They
identified the motif Leu-Asp-Val (LDV) as the essential tripeptide
sequence responsible for recognition and adhesion and reported that
the motif interacted with the integrin R4β1. This stimulated interest
in the properties of this peptide motif and in the design of small

Figure 13. Lead HAV-mimetic compounds.119

Figure 14. Biphenylalanine and 4-acylaminophenylalanine mimics of
the LDV peptide motif.135
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molecule drugs that mimic it. In a review by Akiyama et al.129 fibro-
nectin-integrin interactions were identified as important in tumor
cell migration, invasion, metastasis, chemotaxis, and control of
proliferation. Peptide and antibody inhibitors of cell adhesion were
shown to be effective in inhibiting metastasis and for the study and
control of cancer. The solution structure of a cyclic LDV peptide and
structure-activity relationships were reported by Doyle and co-
workers130 and Viles et al.,131 opening the way for design of small
molecule antagonists of R4β1 integrins that recognize LDV. Jackson
et al.132 described the role of R4β1 integrins and cytokine inducible
vascular cell adhesion molecule 1 (VCAM-1) at inflamed sites.
Monoclonal antibodies generated against either R4β1 or VCAM-1
were shown tomoderate inflammatory response in a variety of animal
models. Jackson et al. described novel, highly potent, cyclic peptides
that competitively inhibited R4β1 binding to VCAM-1, and fibro-
nectin and lymphocytemigration in vivo. Yokosaki et al.133 identified
the tripeptide sequence IDG as homologous to the sequences
LDV, IDA, and LDA in fibronectin and IDS in VCAM-1 and
found that it too bound the R4β1/R9β1 subfamily of integrins.
In 1999, Lin and co-workers134 reported a series of potent
(nanomolar) small molecule-peptide hybrid inhibitors of
VCAM-1 binding and cell adhesion that inhibited allergic airway
responses in animals.
Yang and Hagmann135 reviewed the role of integrin antago-

nists in treatment of inflammatory diseases, and there has been a
great deal of research activity in this area during the past decade.
For example, 4-acylaminophenylalanine derivatives were re-
ported to be potent VLA-4 antagonists.136 The core structure
was hypothesized to mimic the key pharmacophoric features of a
cyclic LDV peptide. This hypothesis was supported in that the
4-acylaminophenylalanine analogue (Figure 14) was found to be
equipotent with the cyclic peptide (44 nM).
Screening of a carboxylate-containing library led to the disco-

very of a series of sulfonylated dipeptides. The 4-biphenylalanine
analogue (Figure 14) at 80 pM exhibited excellent activity in a
VCAM-1 binding assay and also had favorable pharmacokinetic
profile.137,138 Many thousands of VCAM-1 antagonists that bind
to the LDV site on integrins have been reported in the academic
and patent literature in the past decade. A recent review by
Tilley139 summarized small-molecule R4 integrin antagonists
from 2003 to 2008, some of which entered clinical trial for
multiple sclerosis and other inflammatory conditions, and others
show potential in cancer treatment.
RGD: Cell Adhesion Tripeptide Motif. Integrins are a large

class of cell surface receptors responsible for cell adhesion and
signaling bidirectionally across the membrane. They are involved
in an array of biological processes such as thrombosis, inflamma-
tion, angiogenesis, and cancer. The discovery of the minimal
peptide sequence RGD, which plays a prominent role in cell
adhesion via integrin interaction, has led to a large increase in
biomedical and biomaterials research on this motif.140

RGD as Antithrombotic Agents. Thrombosis is a major
cardiovascular disease resulting from aberrant platelet aggrega-
tion. The final step of this aggregation mechanism regardless of
the primary stimulus involves the binding of fibrinogen to
integrin RIIbβ3 (also known as the receptor glycoprotein IIb/IIIa).
Its presence at high densities on platelets ensures that the aggre-
gation step occurs rapidly. Many integrins can recognize specific
short peptide sequences, with 8 of the 24 known integrins
binding the RGD motif.
The therapeutic use of RGD peptidomimetics for the treat-

ment of thrombosis was first reviewed in 1995 by Ojima et al.141

Abciximab, formerly c7E3 Fab, is an example of a drug candidate
targeting the RIIbβ3 receptor on platelet surfaces that is currently
registered for clinical use.141 Despite few RGD analogues being
approved for clinical use, development of orally active RGD
peptidomimetics have been significantly hindered because
of low bioavailabilities. This is largely due to the metabolic
lability of this class of compounds in the presence of proteases
and peptidases and because of their high polarity and charge.
Wang et al.142 published a detailed review of peptidomimetic
analogues of RGD and the strategies used to enhance their
bioavailability.
Because of the significance of the RIIbβ3 integrin receptor and its

potential therapeutic target, much effort has been put toward the
elucidation of its structure. These include electron microscopy,143

homology modeling,144 NMR,145 and X-ray crystallography146 stud-
ies. Crystal structures of the extracellular domain were reported by
Xiao et al.146Crystal structureswere also reported for the ectodomain
complexed with the drugs eptifibatide and tirofiban (Aggrastat).
In the design of RGD mimetics for drug optimization, the

importance of an acidic C-terminus and a basic N-terminus has
been established by comparison of several active analogues.
This is illustrated by SC-52012 (Figure 15), which is currently
under phase I clinical trials as an intravenous drug for antith-
rombosis.147 Alig et al. also reported an RGDmimetic that was
a thromboxane A2 receptor antagonist,

148 however, with weak

Figure 15. Small molecule RGD mimetics.

Figure 16. Cyclic heptapeptide eptifibatide.
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affinity for the RIIbβ3 integrin. De-esterification and reintro-
duction of an acidic group at the C-terminus led to signifi-
cant improvements in RIIbβ3 affinity and resulted in Ro
44-9883 (Figure 15), which is currently under phase II clini-
cal trials.148,149

Disintegrins. A number of homologous peptides isolated from
the Viperidae family of snakes were found to possess RGD
tripeptide units. The peptides were named “disintegrins” because
of their highly potent inhibition activity of integrin function.
Most of the members of the disintegrin family display nonselec-
tive RGD-dependent inhibition of integrins. Barbourin and
ussuristatin are the only two disintegrins that do not contain
an RGD tripeptide sequence, and their activity arises from the
conservative and closely related KGD motif.150 Interestingly,
barbourin shows high specificity for fibrinogen receptors.150

Eptifibatide (Figure 16) is a cyclic heptapeptide mimic of bar-
bourin that shows good selectivity for the RIIbβ3 integrin
receptor and inhibits at the nanomolar level.151

RGD: Application for Selective Therapeutic Delivery and
Imaging Agents. Exploitation of the RGD/integrin system
allows the effective targeting of diagnostics and therapeutics.
The expression of integrin ligands varies with cell and tissue type,
with integrin subtypes dominating the surface of a particular cell.
In particular, some tumor cells overexpress the RVβ3 integrin.
Similarly the RIIbβ3 integrin is only observed on activated
platelets. RGD-based radiolabels have been developed for the
imaging of RIIbβ3 and RVβ3 integrin using 99mTc as the radio-
nuclide.12,152,153 Examples of such radioimaging agents include
DMP444 and [99mTc]apticide (Figure 17), which can be used in
imaging deep vein thrombosis.12 Besides radioimaging, RGD-
labeled compounds have also been developed for delivery of small
molecule drugs, cytotoxins, liposomes, genes, and fluorescent
tags.12 Similarly, a large number of inorganic materials have been
RGD functionalized to enhance their biocompatibility for re-
search studies and medicinal applications. Various compounds
have been developed for surface coatings, including RGD-con-
taining proteins, peptides, and peptide mimetics.12

SKL: Peroxisomal Targeting Sequence. The carboxyl-term-
inal sequence Ser-Lys-Leu (SKL) has been reported to function
as a topogenic peroxisome-targeting signal for the translocation
of proteins into peroxisomes. The tripeptide sequence, also
referred to as the peroxisomal targeting signal 1 (PTS1), was

first described byGould et al. in a study of firefly luciferase.154 It is
a highly conserved motif that can be found in most peroxisomal
matrix proteins. Amino acid modifications to the tripeptide
sequence has also been investigated in subsequent work by
Gould et al. where they had found that conservative variants of
the PTS such as (S/A/C)(K/R/H)(L/M) will suffice in direct-
ing proteins to the peroxisomes.155

In the cytosol, the peroxisomal targeting signal 1 receptor
PEX5 is responsible for the binding of PTS1 and delivery of the
protein to the organelle surface where other components of the
import machinery aid its translocation. The interaction between
PTS1 and PEX5 occurs through a series of tetratricopeptide
repeats (TPRs) found within the receptor C-terminal domain.
Crystallographic data portraying a PTS1-containing peptide
interacting with seven predicted TPR motifs in human PEX5
have been reported.156

To our knowledge, exploitation of the SKLmotif has not been
a focus for drug optimization, either as peptidomimetics or as
peptide drugs. Extensive mutagenesis studies elucidating the
peroxisome-protein translocation mechanisms and require-
ments can be found in the literature, and this has been recently
reviewed by Brocard and Hartig.157

’CONCLUSION AND PERSPECTIVE

The number of examples of biologically important tripeptide
motifs described in this review is small relative to the entire
tripeptide sequence space. However, we postulate that this may
be a function of sparse exploration of sequence space rather than
low natural occurrence of biologically relevant tripeptide motifs.
The informatic studies summarized in the Introduction show
that tripeptide motifs are often over-represented in nature, and
they also have the correct physical size to function as efficient
ligands for protein targets. Clearly the examples presented here
have formed the nucleus for a substantial body of research and
in some cases have generated intellectual property, clinical trial
candidates, useful reagents, and drugs. It would be fair to say that
these active tripeptides and their mimics have been discovered
either randomly, through an understanding of how the motif
interacts with a biological target, or by combination of both. We
contend that if three contiguous amino acids constitute a useful
and minimal biological recognition signal, this may form a useful

Figure 17. RGD-based radiolabeling agents.



1120 dx.doi.org/10.1021/jm1012984 |J. Med. Chem. 2011, 54, 1111–1125

Journal of Medicinal Chemistry PERSPECTIVE

new paradigm for discovering peptides and small organic mole-
cule mimics that are useful modulators of biological function.
Similarly, it is reasonable that a small library of all 8000 possible
tripeptides could be generated and used for screening against
multiple targets and, even if capping of the termini was also
considered, the number of peptides is quite accessible given
current library synthesis technologies. Some studies have re-
ported synthesis of partial or complete libraries of tripeptides or
tripeptide conjugates for biological or nonbiological screening.
Methods for generating such libraries and applications to gen-
erate leads were reviewed comprehensively by Lam and co-
workers over a decade ago158 and more recently for peptide and
small molecule libraries by Boger et al.159

Sequence versus Structure. Although nature may use tri-
peptidemotifs andminimal signals, in many cases the sequence is
not sufficient. Although libraries containing all 8000 possible
tripeptides can be generated, the 3D properties of the motifs are
important. Short peptides are well-known to have poorly defined
structures in solution, so conformational constraint has been
used in many cases (e.g., cyclic RGD and HAV peptides discus-
sed above) to reduce the flexibility of the peptides and induce
some kind of structure. A future extension of this hypothesis
involves answering whether the three-dimensional structures of
tripeptides may also be conserved and reused by nature as well as
tripeptide sequences. We are conducting work in this area based
on the conservation of the 3D structure of the DLF motif
described above.85 In this case, the 3D structure of the tripeptide
motif is surprisingly well conserved when structures in the
Protein Data Bank (http://www.rcsb.org) are queried. Novel
ways of analyzing small peptide motifs, their 3D structures, and
design of small molecule mimics should provide productive ways
of probing chemical biology and discovering new drug leads.
While the small number of examples in this review does not

prove that tripeptide motifs are the minimal useful signal exploi-
ted by nature, it does provide tantalizing evidence for our hypo-
thesis. Subsequent work will be required to determine how
broadly applicable this new paradigm is.
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